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Introduction 

 

• At the end of the previous topic we had a daunting task: control for all 
relevant determinants of some outcome to invoke the CIA.  Problem is 
that many of these factors are unobservable.   

• Put this in the context of an experiment.  We want to know the effects of 
benefit status on wellbeing.  Not everyone in the general population is 
likely to be eligible for a benefit.  For CIA to work, those on and off the 
benefit need to look like random draws from some population.  This gives 
us the causal interpretation we want. 

• Matching is a strategy for ‘trimming’ or ‘pruning’ a sample.  We want to 
compare treated individuals to a relevant group of controls (i.e., people 
who ‘look like’ beneficiaries). 
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CIA Revisited 

• Recall that random assignment insured that selection bias term is zero: 

𝐸 𝑌𝑖 𝐷𝑖 = 1 − 𝐸 𝑌𝑖 𝐷𝑖 = 0 = 𝐸 𝑌1𝑖 𝐷𝑖 = 1 − 𝐸 𝑌0𝑖 𝐷𝑖 = 1  

                                                                            Average Treated Effect on the Treated 

                                                                     +                            0                             
                                                                                                                                   Selection Bias 

 and the latent term can be replaced with its observable counterpart: 

𝐸 𝑌𝑖 𝐷𝑖 = 1 − 𝐸 𝑌𝑖 𝐷𝑖 = 0 = 𝐸 𝑌1𝑖 𝐷𝑖 = 1 − 𝐸 𝑌0𝑖 𝐷𝑖 = 0  

                                                                             Average Treated Effect on the Treated 

• Random assignment gives us this unbiased treatment effect we want. 
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CIA Revisited 

• Matching works if conditioning on some factor(s) (that partly determines 
selection into treatment) gives us essentially the same result as random 
assignment: 

= 𝐸 𝑌1𝑖 𝑿𝑖 , 𝐷𝑖 = 1 − 𝐸 𝑌0𝑖 𝑿𝑖 , 𝐷𝑖 = 1  

                                                  Average Treated Effect on the Treated 

                                    +                            0                             
                                                                                        Selection Bias 

= 𝐸 𝑌1𝑖 𝑿𝑖 , 𝐷𝑖 = 1 − 𝐸 𝑌0𝑖 𝑿𝑖 , 𝐷𝑖 = 0  

                                                   Average Treated Effect on the Treated 

• Matching could give us this same unbiased treatment effect! 
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MATCHING EXAMPLE: One Covariate 

• Suppose we have data on 
wellbeing measured with a 
Likert scale 𝑌𝑖 = 1,10 .   

For those on benefit (𝐷𝑖 = 1): 

𝑌 1 =
32
5 = 6.4 

For those off benefit (𝐷𝑖 = 0): 

𝑌 0 =
56
7 = 8.0 

• As earlier, the benefit system 
appears to reduce wellbeing by 
1.6 points. 
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Observation 

Number 

Treatment 

𝑫𝒊 

Outcome 

𝒀𝒊 

1 1 2 

2 1 5 

3 1 7 

4 1 8 

5 1 10 

6 0 5 

7 0 7 

8 0 7 

9 0 8 

10 0 9 

11 0 10 

12 0 10 



MATCHING EXAMPLE: One Covariate 

• Suppose we also observe the 
deprivation index in the area of 
residence (1 = most deprived 
and 10 = least deprived). 

• We want match treated with 
controls on deprivation scores. 

• Do this mechanically: 

#1 no counterpart – discard 

#2 matches with #6 

#3 matches with #8 

#4 matches with #7 and #10 

#5 matches with #9 

Observations #11 and #12 are discarded 
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Observation 

Number 

Treatment 

𝑫𝒊 

Outcome 

𝒀𝒊 

Area 

Deprivation 

𝑿𝒊 

1 1 2 2 

2 1 5 3 

3 1 7 5 

4 1 8 6 

5 1 10 7 

6 0 5 3 

7 0 7 6 

8 0 7 5 

9 0 8 7 

10 0 9 6 

11 0 10 10 

12 0 10 9 



MATCHING EXAMPLE: One Covariate 
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• Using just the matched individuals, we get these mean wellbeing 
measures: 

𝑌 1 =
5 + 7 + 8 + 10

4
=
30

4
= 7.5 

𝑌 0 =
5 + 7 + 7+92 + 8

4
=
28

4
= 7.0 

• Our matched estimator says that the benefit system increases wellbeing 
by 0.5 points!  

• Q: Why did we get this change to the full sample?  Is this enough? 

 

 



MATCHING EXAMPLE: Two Covariates 
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• Suppose treatment is also 
influenced by education. 

• Matching now gets more 
difficult!  

• Consider #2.  Previously 
matched with #6 (same 
deprivation area).  Years 
of education are quite 
different.  No exact 
match.  #2 looks like #8 
on education. 

• Q: How do we choose 
between these controls?     

 

 

Observation 

Number 

Treatment 

𝑫𝒊 

Outcome 

𝒀𝒊 

Area 

Deprivation 

𝑿𝒊 

Years of 

Education 

𝑺𝒊 

1 1 2 2 7 

2 1 5 3 11 

3 1 7 5 9 

4 1 8 6 12 

5 1 10 7 13 

6 0 5 3 8 

7 0 7 6 10 

8 0 7 5 11 

9 0 8 7 14 

10 0 9 6 9 

11 0 10 10 16 

12 0 10 9 13 



Propensity Score Matching 
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• Imagine further complicating this example.  Could observe multiple factors 
related to treatment.  How do we choose the appropriate match from the 
control group?  Could be further complicated by including covariates that 
are continuous (e.g., detailed benefit and other histories).  Exact matches 
would be virtually impossible. 

• How do we deal with this more complex situation? 

• We want to estimate the probability of treatment conditional on all 
potential predictors: 

𝑃𝑟𝑜𝑏 𝐷𝑖 = 1 𝑋𝑖,𝑆𝑖 , …  

• Often use either maximum likelihood logit or probit for this purpose.  The 
fitted value is the predicted probability of treatment.   

 



Propensity Score Matching 
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• Estimated probability of  
treatment is a ‘summary 
measure’ of all the predictive 
factors, weighted by their 
importance in predicting 
treatment. 

• Let’s try to match observations:   

#1 closest to #6 – discard? 

#2 matches with #8 

#3 matches with #8 

#4 matches with #10 

#5 matches with #9 

Observations #11 and #12 are 
discarded 

 

Observation 

Number 

Treatment 

𝑫𝒊 

Outcome 

𝒀𝒊 

Propensity 

Score 

𝑷𝒓𝒐𝒃 𝒊 

1 1 2 0.7941 

2 1 5 0.5071 

3 1 7 0.4348 

4 1 8 0.3856 

5 1 10 0.2561 

6 0 5 0.5992 

7 0 7 0.3657 

8 0 7 0.4324 

9 0 8 0.2116 

10 0 9 0.3827 

11 0 10 0.0564 

12 0 10 0.0895 



Propensity Score Matching 
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• Using these matches, compute these mean wellbeing measures: 

𝑌 1 =
2 + 5 + 7 + 8 + 10

5
=
32

5
= 6.4 

𝑌 0 =
5 + 7 + 7 + 9 + 8

5
=
36

5
= 7.2 

• Our PSM estimator says that the benefit system decreases wellbeing by 
0.8 points!  

• If 1st observation was discarded,  we’d get a 1.7-point increase in 
wellbeing.  Suggests how fragile these results could be in a small sample 
with uncertainty over ‘how close is close’.   

• Less of a problem with a large sample, but ‘common support’ is critical.      

 



Distance vs Propensity Score Matching 
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• Previously mentioned recent working paper by King and Nielsen who claim 
that the enormously popular PSM method is suboptimal and potentially 
harmful.  Can lead to imbalance, inefficiency and bias.  

• Propensity scores have a lot of valuable uses, but matching isn’t one of 
them! 

• I’ll use some simple diagrams to illustrate their concerns.  We’ll use the 
current example of looking for the causal effect of the benefit system on 
wellbeing. 

• Need to understand the difference between Classic Randomisation (CR) 
and Fully Blocked Randomisation (FBR) that’s at the heart of their 
reasoning.      

 



Types of Randomisation 
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• Classic Randomisation is your typical RCT.  Eligible individuals are 
randomly assigned to treatment and control groups.  Balance occurs on 
average for both observable and unobservable factors. 

• Fully Blocked Randomisation means that you find at least one control who 
matches a treated individual exactly.  Random allocation happens within 
this ‘block’.  As a result, balance occurs exactly for observed factors (and 
still on average for unobservables).    

• King and Nielsen show that FBR dominates CR in terms of balance, power, 
efficiency, bias and researcher costs.  Any matching approach should try to 
emulate FBR, not CR.  The former is the optimal target.          

 



Graph of Two Covariates 
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• This is what our current data look like.  Treated are 1s and the control 0s. 

 



Best Case Scenario 
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• Ideally, space is saturated with controls.  As sample increases, exact matches appear. 
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Pruning Gives Us the Counterpart of FBR 
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• This is known as Mahalanobis Distance Matching.   

 
S

X10

1

1

1

1

1

0

0

0
00

2 4 86

20

15

10

5



PSM is Suboptimal 
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• King and Nielsen show that PSM is generally inferior.  Reason is that PSM 
emulates CR, while MDM emulates FBR (and FBR dominates CR).  So PSM 
is suboptimal because its target is ‘second-best’. 

• They motivate this by going back to the saturated data.  PSM estimates 
the probability of treatment and matches individuals by minimising the 
probability distances.  Suppose (and this is key) that everyone has the 
same predicted probability (all equally likely to be treated – the ideal 
situation).  Matches will be chosen and controls discarded at random. 

• The basic problem is 𝑋𝑇 = 𝑋𝐶 ⇒ 𝑃 𝑇 = 𝑃 𝐶 ,  
                        but 𝑃 𝑇 = 𝑃 𝐶  ⇏ 𝑋𝑇 = 𝑋𝐶.      

 



PSM is Suboptimal 
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• Let’s show what this would like in this extreme example.      



The PSM Paradox 
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• King and Nielsen summarise this with the PSM Paradox: 
‘When you do better, you do worse.’ 

• Pruning at random means that PSM can lead to imbalance, 
inefficiency and bias. 

• My concern is that this is true for this extreme scenario where 
we have identical predicted probabilities of treatment.  Not 
sure if this holds for the more typical situations where 
probabilities vary over the sample.  [K&N say it doesn’t matter 
because this says that the matches are poor anyway!] 

• Conclusion: Recent concerns over the appropriateness of 
PSM.  Other matching methods may be far better from a 
conceptual and practical point of view.           



Matching vs Regression Analysis 
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• Motivations behind matching and regression analysis are 
similar: Isolate treatment effect while holding other factors 
constant. 

Relative Advantages of Matching 

1. Less sensitive to functional form assumptions 

2. Easier to assess when it’s working well 

3. Matching discards observations that aren’t comparable 

4. Easier to explain   



Matching vs Regression Analysis 
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Relative Advantages of Regression Analysis 

1. Matching works well for simple binary treatment, but not for 
more complex situations 

2. Regressions estimate partial effects of all covariates on the 
outcome of interest 

3. Allows interactions of treatment with other covariates 

4. Replication is easier (in some sense) 

In the end, the biggest threat to both matching and 
regression analysis is the same:  Unobserved factors 
that influence treatment and the outcome of interest.    


